This close-up image of a large eruptive prominence emerging from the solar surface was taken in an extreme ultraviolet wavelength of ionized helium heated to about 60,000 to 80,000 degrees K. It was taken in 1999 by the Extreme ultraviolet Imaging Telescope on board the SOHO (Solar and Heliospheric Observatory) spacecraft.

sohowww.nascom.nasa.gov or sohowww.estec.esa.nl
The Sun’s Atmosphere

In these images, the corona is colored to see the effects of the magnetic fields on the surface of the Sun. The positions of the magnetic fields in the corona cause the Sun’s surface to be cooler and more energetic than the Sun’s atmosphere. As the Sun’s magnetic field increases, it becomes more energetic and produces more visible light. The corona is often referred to as the “heliosphere,” because it is the region of space that is influenced by the Sun’s magnetic field. The heliosphere is divided into two regions: the heliosheath and the heliosphere.}

How is the Sun’s magnetic field created and structured?

The Sun’s magnetic field is created from magnetic field lines that extend from the Sun’s surface to its atmosphere. The Sun’s magnetic field lines are created by the solar wind, which is a stream of charged particles that flow out from the Sun and are carried by the solar wind. The solar wind is caused by the Sun’s magnetic field, which is created by the rotation of the Sun. The rotation of the Sun causes the solar wind to spiral outwards, creating a magnetic field that stretches from the Sun to the edge of the solar system.

The Sun’s magnetic field is structured in a way that is similar to the Earth’s magnetic field. The Sun’s magnetic field is created from a series of magnetic field lines that extend from the Sun’s surface to its atmosphere. The Sun’s magnetic field lines are created by the solar wind, which is a stream of charged particles that flow out from the Sun and are carried by the solar wind. The solar wind is caused by the Sun’s magnetic field, which is created by the rotation of the Sun. The rotation of the Sun causes the solar wind to spiral outwards, creating a magnetic field that stretches from the Sun to the edge of the solar system.

The Sun’s magnetic field is created from magnetic field lines that extend from the Sun’s surface to its atmosphere. The Sun’s magnetic field lines are created by the solar wind, which is a stream of charged particles that flow out from the Sun and are carried by the solar wind. The solar wind is caused by the Sun’s magnetic field, which is created by the rotation of the Sun. The rotation of the Sun causes the solar wind to spiral outwards, creating a magnetic field that stretches from the Sun to the edge of the solar system.

The Sun’s magnetic field is created from magnetic field lines that extend from the Sun’s surface to its atmosphere. The Sun’s magnetic field lines are created by the solar wind, which is a stream of charged particles that flow out from the Sun and are carried by the solar wind. The solar wind is caused by the Sun’s magnetic field, which is created by the rotation of the Sun. The rotation of the Sun causes the solar wind to spiral outwards, creating a magnetic field that stretches from the Sun to the edge of the solar system.

The Sun’s magnetic field is created from magnetic field lines that extend from the Sun’s surface to its atmosphere. The Sun’s magnetic field lines are created by the solar wind, which is a stream of charged particles that flow out from the Sun and are carried by the solar wind. The solar wind is caused by the Sun’s magnetic field, which is created by the rotation of the Sun. The rotation of the Sun causes the solar wind to spiral outwards, creating a magnetic field that stretches from the Sun to the edge of the solar system.